
 The fate of nearly supersymmetric vacua

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP09(2009)013

(http://iopscience.iop.org/1126-6708/2009/09/013)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 08:57

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/09
http://iopscience.iop.org/1126-6708/2009/09/013/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
9
(
2
0
0
9
)
0
1
3

Published by IOP Publishing for SISSA

Received: July 12, 2009

Accepted: August 10, 2009

Published: September 1, 2009

The fate of nearly supersymmetric vacua

Michael Dine, Guido Festuccia and Alexander Morisse

Santa Cruz Institute for Particle Physics and Department of Physics, University of California,

Santa Cruz CA 95064, U.S.A.

E-mail: dine@scipp.ucsc.edu, guido@scipp.ucsc.edu,

amorisse@physics.ucsc.edu

Abstract: Supersymmetric vacua are stable. It is interesting to ask: how long-lived

are vacua which are nearly supersymmetric? This question is relevant if our universe is

approximately supersymmetric. It is also of importance for a number of issues of the

physics of the landscape and eternal inflation. In this note, we distinguish a variety of

cases. In all of them the decay is slow. For a flat space theory decaying to a deep AdS

vacuum, the leading behavior of the decay amplitude, if a thin wall approximation is valid,

is A = γe−2π2/(Re m3/2)2 (where the phase of m3/2 is defined in the text) for Re m3/2 > 0,

and zero otherwise. Metastable supersymmetry breaking generally yields parametrically

more rapid decays. For nearly supersymmetric decays, we will see that it is necessary to

compute subleading terms in the exponential to extraordinarily high accuracy before one

can meaningfully discuss the prefactor.
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1 The stability of nearly supersymmetric vacua

It has long been appreciated that the state we find about us might be metastable. This pos-

sibility has been sharpened recently by considerations of the landscape [1] and of metastable

supersymmetry breaking [2, 3]. If our universe is unstable, we are interested in the problem

of tunneling from a state that is nearly Minkowski to a state (more precisely a big crunch)

with negative cosmological constant. The problem of the decay of flat space to a negative

c.c. state was first considered by Coleman and DeLuccia [4]; the case of the decay of a state

with a small, positive cosmological constant has been considered by various authors [5–8].

If nature were exactly supersymmetric, and space-time precisely Minkowski (i.e. zero

c.c.), then, as we will review, tunneling to a lower energy state, supersymmetric or not,

would be forbidden [9]. Of course, nature is not exactly supersymmetric, but it may be

approximately so, with supersymmetry broken at a scale well below some more fundamental

scale (the unification scale, string scale, etc.). The emergence of the landscape suggests

that our universe may exist in a sea of large, negative cosmological constant states: more

precisely, with cosmological constant much larger in absolute value than m2
3/2M

2
p where

m3/2 is the gravitino mass and Mp the Planck mass. The developing understanding of

metastable supersymmetry breaking suggests that there might also be some number of

states with smaller, negative, cosmological constant, of order m2
3/2M

2
p .

– 1 –
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As we will explain in this paper, for the deep anti-de Sitter (AdS) states, as m3/2 → 0,

with the cosmological constant fixed to zero, there are various possibilities:

1. The lower c.c. state is not even approximately supersymmetric, in which case the

tunneling amplitude vanishes.

2. The lower c.c. state is supersymmetric or approximately so: if m3/2 is small, and if

Re m3/2 > 0 the state decays. If the scales of the potential, M , and changes in fields,

∆φ, are small compared to Mp, the bubble wall is thin, and the tunneling amplitude

is given by the universal form:

A = γ exp

(

−
2π2M2

p

(Re m3/2)2
+ ∆

)

. (1.1)

Here ∆ is suppressed relative to the leading term in the exponent by powers of

M/Mp,∆φ/Mp and m3/2. We will explain the nature of these corrections, as well

as the problem of determining the prefactor γ [10]. If Re m3/2 < 0, the tunneling

amplitude vanishes (if Re m3/2 = 0 then, when the tunneling amplitude is non-zero,

the exponent in the tunneling amplitude is larger and non-universal). The phase of

m3/2 appearing in this expression requires some explanation, which we provide. This

result has been noticed in particular cases in (especially [11]), but its generality has

not been stressed.

3. If (as we might expect to be the generic case in a landscape), changes in fields are

large, ∆φ ∼ Mp, then the thin wall approximation is not valid, and the exponent

in the tunneling amplitude is non-universal. In this case, the tunneling amplitude is

expected to vanish, or to be suppressed by

e
−βM2

p/m2
3/2 (1.2)

with β a constant of order one.

In the case of metastable supersymmetry breaking, we will see that:

1. Gravitational effects in tunneling are unimportant, and tunneling is always allowed.

2. The form of the tunneling amplitude is non-universal, depending in detail on the

underlying structure. The tunneling amplitude is typically of the form

A ∝ e
−

„

Mp
m3/2

«

×
„

Mp
m3/2

«a

(1.3)

where a is a fraction less than 1.

In the next section, we review the vanishing of tunneling in the supersymmetric limit.

This fact can be understood from general considerations similar to those which enter in

the proof of the positive energy theorem [12–14], and can be derived in a quite general

way from semiclassical considerations [9] in any situation whenever an effective field theory
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description is valid. In the third section we show that for small supersymmetry breaking,

when an effective field theory description is valid, one obtains the universal expression of

eq. (1.1). We explain that the formula has corrections of order the scales in the potential

divided by Mp and the field variations (including light, hidden sector fields) divided by Mp,

as does the wall thickness; as the scales in the potential approach the Planck scale, the thin

wall approximation (as well as the effective action description) breaks down. In section 4.1,

we consider the corrections to the leading, universal result. The nearly supersymmetric

limit allows one to organize the complete determinant computation, outlined by Callan and

Coleman [10], rather simply in the language of a three dimensional effective field theory.

This analysis clarifies issues connected with the validity of the thin wall approximation,

and also makes clear that one cannot meaningfully discuss the prefactor without computing

the exponential in the tunneling amplitude with extraordinary accuracy. In this section,

we comment on the case of decays with small positive cosmological constant, noting a

breakdown of the effective field theory analysis in a certain limit, which in turn implies

a breakdown (known from other work) of the thin wall approximation. In section 5, we

discuss metastable supersymmetry breaking. In the gravitational context, as we have

indicated above, metastable breaking refers to situations where there is a lower lying,

supersymmetric state with cosmological constant of order m2
3/2M

2
p (in absolute value). By

considering simple examples, we will see that the decay rate, while depending on the details

of the potential, is parameterically faster than the deep AdS case (though the lifetimes can

easily be extremely long). We note that the distinction between metastable and deep

AdS states fits well into known categories of dynamical supersymmetry breaking. In the

concluding section, we engage in some conjectures about the significance of these results.

For the landscape, they reinforce the notion that approximately supersymmetric states are

naturally extremely stable. This is of interest since one might suspect that supersymmetric

stationary points of effective actions are much less common that non-supersymmetric ones.

Stability, however, may single out such states [15]. In thinking about eternal inflation [16,

17], there has been concern about the possibility of dS states whose lifetime is of order the

recurrence timescale. For states which can only decay to deep AdS states, our results are

problematic, but for what may well be the generic situation of metastable supersymmetry

breaking, lifetimes, while long, are much shorter than recurrence times.

2 Tunneling (or its absence) in the supersymmetric limit

The absence of tunneling from flat space in the supersymmetric limit follows from the

existence of global supercharges which satisfy the standard supersymmetry algebra:

{Qα, Qβ} = Pµγµ. (2.1)

Arguments based on this algebra underlie Witten’s proof of the positive energy theorem [12,

14]. But one can make a different argument [9], based around the theory of semiclassical

tunneling developed by Coleman [18] and Coleman and DeLuccia [4]. Consider, first, the

case of a general (non-supersymmetric) field theory without gravity. Following Coleman,

we suppose that the energy difference between the false and true vacuum is ǫ, where ǫ

– 3 –
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is small compared to other scales of the problem. We are interested in the amplitude to

produce a bubble. We also take the bubble wall to be thin. Then we can treat the size of

the wall, ρ, as a collective coordinate. For large values of ρ, the action for this coordinate

is the sum of two terms, one of which is the surface tension, S1 (in Coleman’s notation)

times the (Euclidean) surface area of the bubble, the second of which is equal to −ǫ times

the volume of the bubble. In other words, the action is:

B(ρ) = 2π2S1ρ
3 − 1

2
π2ǫρ4. (2.2)

This action has a stationary point (actually a maximum) for

ρ = 3S1/ǫ. (2.3)

The presence of a negative mode gives rise to an imaginary part in the energy — precisely

the indication of an instability. We see self-consistently the condition for a thin wall; ρ

should be much larger than the other length scales of the problem (typically the Compton

wave lengths of the field involved in the transition).

2.1 Features of tunneling in theories of gravity

In the gravitational case, we can proceed in a similar way. Following [4], we can write the

line element for the O(4) symmetric bounce as:

ds2 = dξ2 + ρ(ξ)2dΩ2. (2.4)

Then, in the case of a single field, φ, the equations of motion for φ and ρ are:

φ′′ + 3
ρ′

ρ
φ′ =

d

dφ
U(φ) ρ′2 = 1 +

1

3
κρ2

(

1

2
φ′2 − U(φ)

)

. (2.5)

where κ = 8πG. Coleman and DeLuccia compute the action for a thin-walled bounce. In

this case, as we will discuss further, the motion of φ occurs at some characteristic, large,

value of ρ, ρ = ρ̄, while ρ changes only very slightly. For large ρ, their result may be written:

B(ρ̄) = 2π2

(

S1 −
√

4ǫ

3κ

)

ρ3 +
6π2ρ2

κ
+ O(ρ). (2.6)

The fact that the energy density term grows only as ρ3 is related to the well-known fact

that surface areas and volumes grow similarly in AdS space. It is clear that B(ρ) has no

extremum if ǫ is too small (for fixed S1). The critical value of the ratio ǫ/S2
1 is such that

ǫ =
3

4
κS2

1 . (2.7)

As one approaches the critical point, the radius becomes large. Writing

ǫ =
3

4
κS2

1(1 + δ) (2.8)

– 4 –
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one has, for small δ:

B(ρ) = −π2ρ3S1δ +
6π2ρ2

κ
. (2.9)

So

ρ̄ =
4

κS1δ
B =

2π2ρ̄2

κ
, (2.10)

which agrees with the result of CDL in this limit. Note that for negative δ, there is no

stationary point, and correspondingly no bounce. As explained by CDL, in the case where

a bubble exists, it evolves to a singular geometry. We will not speculate on the significance

of the crunch, other than to remark that it can’t be understood with low energy effective

field theory.

2.2 The wall thickness

It would seem that, in the nearly critical situation δ → 0+, the bubble becomes large and

the validity of the thin wall approximation arbitrarily good. However, even though the

wall is thin viewed in the metric of equation (2.4), the relevant measure of “thinness” is

the change in ρ across the wall. This is not surprising, since the action is sensitive to the

area of the bubble on S3.

In our simple model (presented in section 3), ∆ρ is small provided all of the scales in

the superpotential M,µ, etc., are small compared to the Planck mass Mp. More generally,

the requirement is that the potential should be small in Planck units, and similarly all field

excursions (∆φi). To see this, note:

∆ρ =

∫ ρ+

ρ−

dρ =

∫ ξ+

ξ−

dξ
dρ

dξ

≈
∫

dφ
dξ

dφ

[

1 +
1

3
κρ2(|φ′2| − U(φ+))

]1/2

. (2.11)

To get a rough estimate, can approximate the integral of
√

|φ′2| − U(φ+) across the wall by
1
2

√
ǫM−1, where M−1 is roughly the wall thickness in the thin wall approximation. Then,

for large ρ, we have

∆ρ ∼ ρ

√
ǫ

MMp
(2.12)

which is of order ρ M
Mp

. We see that if M is small compared to Mp, the thin wall description

is valid; conversely, if the scales in the potential are comparable to Mp, the wall thickness

is comparable to ρ.

2.3 Supersymmetric and nearly supersymmetric vacua

In the case where both the initial and final states are supersymmetric, the bound of eq. (2.7)

is saturated. Recall that for a supersymmetric theory, the potential is given by

U = eκK
[

DiWDjWgij − 3κ|W |2
]

, (2.13)

– 5 –
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with

DiW =
∂W

∂φi
+ κ

∂K

∂φi
W (2.14)

and gij is the inverse of the Kahler metric, gij = ∂2K
∂φiφ∗

j
(in this section we are choosing

units with Mp = 1). Supersymmetry is unbroken if and only if DiW = 0 ∀ i. In this case,

the value of the potential at the minimum is −3κeκK |W |2. Necessarily W = 0 for the

Minkowski vacuum. We will denote the value of the field(s) in this vacuum by φ+ (these

formulas generalize immediately if there are several fields). Calling the value of φ in the

“other” vacuum φ−, and writing

W (φ−) = ∆W (2.15)

we have

ǫ = 3κeκK(φ−)|∆W |2

It is a well-known result that there exist static domain walls between supersymmetric

Minkowski or AdS states with tension given by

S1 = 2∆eκK/2W (2.16)

(we will see shortly that this statement requires refinement when the walls are not thin,

in the sense used above, though it is exact when one of the states has zero cosmologi-

cal constant, i.e. vanishing W ). So the supersymmetric case sits precisely on the border

between tunneling and no tunneling (at least for the decay of Minkowski space, or when

M,∆φ ≪ Mp).

One non-supersymmetric generalization is immediate. In the case that the Minkowski

vacuum is supersymmetric, and the AdS is not (even approximately), it is easy to see that

tunneling does not occur. The expression of eq. (2.16) is, in fact, a lower (BPS) bound,

which is saturated in the supersymmetric case. If DiW 6= 0 for some fields in the lower

cosmological constant state, then ǫ < 3
4κS2

1 , so the parameter δ defined earlier in eq. (2.8)

is less than zero.

2.4 More careful treatment of the BPS bound

An elegant treatment of the BPS domain wall problem, which is directly applicable to

the supersymmetric tunneling situation, is provided in [11]. In particular, we can write

a result for the action of the O(4) symmetric bounce configurations, at large ρ, which is

exact, including (semiclassical) gravitational corrections.

First, consider the question of the wall thickness. Coleman and DeLuccia ignore grav-

itational effects inside the wall. We have seen that this is a good approximation provided

∆φ/Mp ≪ 1 and the scales in the potential are small compared to the Planck scale. But we

can consider such corrections readily in the supersymmetric case, and show that the bound

of eq. (2.7) is still saturated. We need, first, to give a definition of the wall in the case that

the wall has finite thickness. Again, following CDL, call φ+ the value of the field(s) in the

“false” vacuum, and φ− the value in the “true” vacuum. Define ρ± (ξ±) as the value of

– 6 –
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ρ (ξ) at which the field φ takes a value (1 − λ) of φ±, for some small λ. Then divide the

space into three regions:

1. ρ < ρ−. In this region, the bubble is essentially in the true vacuum.

2. ρ− < ρ < ρ+. This is the bubble wall.

3. ρ > ρ+. In this region, the bubble is essentially in the false vacuum.

According to CDL, the action for this system is the sum of three terms:

1. From region I, we have a contribution:

S(1) = −12π2

κ

∫ ρ−

0
ρdρ

[

1 − 1

3
κρ2U(φ−)

]1/2

. (2.17)

2. From region II, we have the tension contribution. For large ρ, the problem is essen-

tially one dimensional, and one can take over the result for the BPS tension, derived

particularly elegantly in [11] (for earlier derivations, see in particular [19])

S(2) = 4π2[ρ3
+eκK(φ+)/2|W (φ+)| − ρ3

−eκK(φ−)/2|W (φ−)|]. (2.18)

3. It is necessary to subtract the action for the configuration with no bounce. This gives

an additional contribution:

S(3) = +
12π2

κ

∫ ρ+

0
ρdρ

[

1 − 1

3
κρ2U(φ+)

]1/2

. (2.19)

The integrals in S(1), S(3) are particularly simple. Given that

U(φ±) = κeκK(φ±)|W (φ±)|2 (2.20)

for general, non-zero value of W (φ±), the terms proportional to ρ3 cancel in the large ρ

expansion of the bounce action. If the state φ+ has vanishing cosmological constant, the

cubic terms still cancel exactly; one is left with a positive quadratic contribution:

S(ρ+) ≃ 6π2

κ
ρ2
+ (2.21)

and there is no stationary point, and hence no tunneling. This analysis holds in any

situation where an effective field theory description is valid, in particular when excursions

of fields are small compared to the Planck mass.

3 Broken supersymmetry in the higher energy state

Now we consider the case where, in the higher energy, Minkowski state, supersymmetry

is broken, while a much lower state with c.c. larger in absolute value than m2
3/2M

2
p is

approximately supersymmetric. We will assume that there are some fields, φ, with mass

M ≫ m3/2; necessarily there are fields, z, responsible for supersymmetry breaking, with

– 7 –
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masses less than or of order m3/2. We will take the superpotential to have the (hidden

sector) form:

W = Wφ(φ) + Wz(z) (3.1)

(we will argue later that this assumption is not particularly strong), and we will as-

sume that ∆z ≪ Mp. Then we can define Wφ(φ+) = 0, and Wφ(φ−) = ∆W , and, in

the Minkowski vacuum, eK/2Wz(z) ≡ eK/2W0 = m3/2. Neglecting corrections of order

m3/2(M/Mp,∆φ/Mp), we have that

S1 = 2∆W ∆U = − 3

M2
p

(

|∆W |2 + 2 Re W0∆W
)

. (3.2)

So we have

δ =
2Re (m3/2∆W )

|∆W |2 (3.3)

and

ρ̄ =
|∆W |

Re (m3/2∆W )
. (3.4)

The action is

B =
2π2ρ2

κ
. (3.5)

Note that it is important that the light field, z, should not take Planckian excursions;

otherwise, in addition to W0 ∼ m3/2M
2
p , there will be changes in the superpotential W (φ−)

of the same order.

An illustrative model which satisfies these conditions is that of [15]. Here there is a

heavy field, φ, and a light field, z. The superpotential is taken to be simply a sum of

two terms,

W (φ, z) =
M

2
φ2 − λ

3
φ3 + µ2z + W0 (3.6)

while the Kahler potential is

K = φ†φ + z†z − 1

2Λ2
z†zz†z, (3.7)

with M ≪ Mp, Λ ≪ Mp. In the limit that µ = W0 = 0, supersymmetry is unbroken.

The system has vacua at φ = 0 and
(

at leading order in M
Mp

)

φ = M/λ. The first has

vanishing cosmological constant. The second has

W (φ) ≡ ∆W = −1

6

M3

λ2
.

The breakup of the superpotential in eq. (3.6) might arise, at low orders in fields, due to

symmetries; the Kahler potential of eq. (3.7) for z might arise if supersymmetry is broken

– 8 –
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dynamically in a hidden sector. Now, if we turn on µ2, we see that to leading order in Λ2

M2
p
,

the vanishing of cosmological constant for the φ = 0 state requires that

W0 =
1√
3
µ2Mpe

iα (3.8)

where the phase α is not constrained. In this state, we have

〈z〉 = O
(

Λ2

Mp

)

. (3.9)

and |DzW |2 ∼ m2
3/2M

2
p ∼ µ4.

If W0 ≪ ∆W the second state, for which approximately φ = M/λ, will have a c.c.

much larger in absolute value than m2
3/2M

2
p , and at first order in µ2:

〈z〉 = O
(

µ2M2
p

∆W

)

. (3.10)

In this state we also have |DzW |2 ∼ µ4. As a result of our introduction of the parameter

Λ, 〈z〉 ≪ Mp in both states; similarly, ∆φ ≪ Mp because M ≪ Mp.

On the other hand, when we calculate the difference in potential between the two

states, the contribution of the 3|W |2 term is:

∆U = −3M−2
p eκK(φ−)(|∆W |2 + 2Re ∆WW0) + O

(

W0

M2
p

)2

: (3.11)

where ∆W is given by eq. (3.8). As we have seen, near the supersymmetric limit the thin

wall approximation is valid provided that |∆z|/Mp, |∆φ|/Mp ≪ 1. So from the energy

difference calculated above, and the knowledge of the minimum tension domain wall, we can

obtain the tunneling amplitude. In this model, the tension of the domain wall separating

the two vacua remains S1 = 2eκK(φ−)∆W , up to terms of order m2
3/2 and ∆z/Mp, ∆φ/Mp.

To see this, note that:

1. Because φ, z ≪ Mp, we can ignore the eκK factors multiplying W0 (not ∆W ).

2. The |DW |2 terms are of order µ4 ∼ m2
3/2M

2
p .

3. The shifted −3|W |2 terms do include potential contributions of order m3/2. But in

fact they make no additional contribution to the tension. This can be understood by

noting that the problem at hand is, to order m3/2, just a deformation of the original

problem in which a constant of order m3/2M
2
p has been added to the superpotential.

From the expressions of [11], as we have discussed, the tension remains 2eκK(φ−)∆W ,

up to terms of order ∆φ/Mp.

4. One might also worry about the kinetic terms for z, but the resulting contributions

to the tension are of order m2
3/2. This is easily understood in the particle analogy.

The, field φ moves from the neighborhood of the true vacuum to the false vacuum

in a time of order M−1. So as this field is approaching its endpoint, the light field

– 9 –
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is just beginning its motion. It has just enough kinetic energy to reach the “top of

the hill” in the inverted potential; the action for this part of the motion is simply

m2
Z∆z2, which is suppressed in our model, in which the change in z is small.

So the leading contribution to B(ρ) for large ρ is obtained by using the leading order

tension, S1 = 2∆eK(φ)W (φ), and the energy splitting as described above, and

ρ̄ = Re m3/2 B = 2π2 M2
p

(Re m3/2)2
(

1 + O(M/Mp,m3/2/Mp)
)

. (3.12)

While derived in a specific model, this result is quite general. The important ingredi-

ents is the existence of a set of heavy fields (typical mass, M), whose potential has multiple

stationary points, and a small scale of supersymmetry breaking, M ≫ m3/2; inevitably this

requires some set of fields like z light compared to M .

To summarize, we have established that:

1. For an approximately supersymmetric, Minkowski vacuum, decaying to an ap-

proximately supersymmetric, AdS vacuum, the tunneling amplitude behaves as

e
−2π2A

M2
p

|m3/2|
2
, with A an order one constant or vanishes. For ∆φ ≪ Mp for all

fields (including hidden sector fields), and for scales in the potential M ≪ Mp,

A = e
−2π2 M2

p

(Re m3/2)2 . (3.13)

for positive m3/2, and vanishes for negative Re m3/2.

2. For an approximately supersymmetric, Minkowski vacuum decaying to a non-

supersymmetric AdS state, the decay amplitude vanishes (for small m3/2).

4 Small fluctuations about the bounce solution

In order to understand the prefactor in the tunneling amplitude, it is necessary to under-

stand the determinant of small fluctuations. As we will see, the question of the prefactor

is only interesting if one can compute the exponent with extraordinary accuracy, includ-

ing both classical and quantum parts. But consideration of the fluctuations is useful for

understanding the thin wall (or other) approximation(s) and assessing its (their) validity.

The case without gravity is particularly simple, at least conceptually; the introduction of

gravity raises new issues.

4.1 The prefactor and the exponent without gravity

Callan and Coleman [10], in a classic paper, outlined the problem of computing the func-

tional determinant in the case of vacuum decay. One might think that the decay of nearly

supersymmetric states would provide a particularly simple framework in which to do such

a computation. As we now explain, however, the problem of isolating the dimensionful

prefactor is a hard one, precisely because, in this limit, the tunneling amplitude is so small.

– 10 –
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The issues can be understood by considering tunneling in the absence of gravity. We

focus on a theory in which there is a massive field, with mass M , (e.g. the massive adjoint

of the simplest SU(5) grand unified theory) and a hidden sector responsible for supersym-

metry breaking, with characteristic scale µ. In the limit that the supersymmetry breaking

vanishes, there often are BPS domain walls, with tension of order M3. The domain wall

possesses a bosonic zero mode arising from translations of the domain wall; in the case of

supersymmetric, BPS domain walls, there is also a fermionic zero mode. These zero modes

are described by a 2+1 dimensional field theory living on the wall. The effective field theory

possesses two real zero modes. These zero modes have small components of the hidden sec-

tor fields; in general, the light fields in this sector are decoupled from the modes on the wall.

Anticipating that the radius of the bubble is large, we can describe the light modes of

the system by a 2 + 1 dimensional field theory in a background metric. The tension is the

cosmological constant of this theory; there is a contribution to the potential arising from

the bulk term in the energy. Described in this way, the condition on the bubble radius is

the condition for vanishing tadpole in the field theory.

It is easy to write down complete sets of eigenfunctions of the three dimensional lapla-

cian and (massless) Dirac operator [10]. The low lying modes include a negative mode —

up to a normalization factor, just the second derivative of the action with respect to ρ.

There are four translation zero modes, and then a tower of higher modes. If one examines

the the resulting determinant, one immediately encounters a linear divergence. This di-

vergence is readily understood by considering the structure of the effective action. In the

spherical geometry under consideration, the effective action can contain a term

∫

d3x
√

gR (4.1)

where gµν is the metric of the sphere, and R the curvature scalar. Such a term is not for-

bidden by supersymmetry, and will appear at one loop (without supersymmetry, there is a

cubic divergence, associated with an infinite renormalization of the tension). This indicates

that the determinant depends on the microscopic details, and is neither universal or simple.

Considering, more generally, the terms which can appear in the three dimensional

effective action, one sees immediately that there are several terms in the action which one

must compute accurately before one can meaningfully discuss the prefactor. One expects,

even classically, corrections to the leading 1/ǫ3 terms in the action behaving as 1/ǫ2, 1/ǫ.

These exponentially important corrections totally overwhelm any modest effects in the

prefactor associated with the few lowest modes. The low eigenvalues on the sphere are of

order 1/ρ2, which for the flat space problem, is of order ǫ2.

4.2 Small fluctuations in theories including gravity

Theories with gravity raise new conceptual and technical issues. One might hope that

the nearly supersymmetric limit we have studied here is in some ways simple. As δ → 0,

the bounce radius becomes large. There is a relatively clean separation of light (1/ρ ∼
δ) and heavy (M) modes, and again other light modes (with masses O(m3/2), from the

hidden sector) are very weakly coupled to the modes on the wall. Focussing, first, on

– 11 –
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Minkowski → AdS decays, the lightest, negative eigenvalue is of order m3/2 in this limit.

So there does not appear to be anything singular as one approaches this point.

As in the non-gravitational case, sensibly defining the prefactor requires, first, a high

degree of precision in the calculation of the exponent. As in that case, there is a linear

divergence in the determinant, associated with the generation of an
∫ √

g R term in the

effective theory. Such a term corresponds to an or Mp/m3/2 term in the action, a small

fractional correction to the leading term. but a huge correction to the overall rate. More

generally, writing the exponential as:

B = α(M2
p /m2

3/2) + β(Mp/m3/2) + C, (4.2)

α and β, for example (which include corrections in powers of M/Mp), must be known to bet-

ter than parts in (m3/2/Mp)
2, (m3/2/Mp) accuracy, respectively, and C must be calculated

to better than order one accuracy before a prefactor such as γm4
3/2 can be meaningfully

presented with a stated uncertainty, ∆γ. Whether this is possible, even in principle (e.g.

worrying about questions of convergence of the various perturbation expansions in play

here) is an interesting, if academic, question.

A potential breakdown of the thin wall approximation, signalled by difficulties with

the effective action, is provided by the case of of dS → Minkowski decays studied in CDL.

Here, CDL find for the bounce action

B(ρ) = 2π2S1ρ
3 +

12π2

κ

[

1

κǫ
− 1

κǫ

(

1 − 1

3
κρ2ǫ

)3/2

+
ρ2

2

]

(4.3)

with stationary point at:

ρ̄ =
12S1

4ǫ + 3κS2
1

(4.4)

and

B =
216π2S4

1

ǫ[4ǫ + 3κS2
1 ]2

. (4.5)

This result has puzzling features. In particular, if we hold S1 fixed and vary ǫ, we see

that there is a critical value of ǫ where the stationary point goes from being a maximum

of the potential (yielding the negative mode in the functional integral) to a minimum.

Examining eq. (4.3), we see that at this point, the thin wall approximation is breaking

down; the second derivative of B diverges, and the separation of light and heavy modes is

no longer valid. Beyond this point, even classically, it is necessary to study the behavior of

the full equations in order to establish the existence of solutions. In [6, 7], for example, it is

shown numerically that solutions exist quite generally, not only for the decays to Minkowski

space, but for decays to AdS, in cases with small cosmological constant and δ < 0, with

decay amplitude bounded by the exponential of the dS entropy.

– 12 –
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5 Metastable supersymmetry breaking

In the past few years, beginning with the work of [2], there has been a growing apprecia-

tion that metastable supersymmetry breaking is generic. In the landscape context, where

inevitably the low cosmological constant state in which we find ourselves is surrounded by

states of large, negative cosmological constant, this statement requires some refinement.

The issues can be illustrated by a simple model of a single field:

W = µ2z +
1

(n + 3)
Mnzn+3 + W0 K = z∗z − 1

2Λ2
(z∗z)2 Λ ≪ M,Mp. (5.1)

Here M is some large energy scale; it might be as large as Mp, but could be much smaller.

This model has a non-supersymmetric ground state near the origin, as we have discussed

above; choosing |W0| = 1√
3
µ2 renders the cosmological constant zero in this state. But the

system also has a supersymmetric ground state, with

zn+2 = µ2Mn. (5.2)

This state has a negative cosmological constant,

V0 = −3eK |W0|2
M2

p

(

1 + O
(

µ

Mp

)2/3
)

. (5.3)

In other words, the state is lower than the non-supersymmetric, zero cosmological constant

state by an amount 3m2
3/2M

2
p .

For potentials such as this, as we will see, gravitational corrections are not important

(even for M ∼ Mp), but a thin wall analysis is not appropriate. One can estimate the

bounce action, instead, by taking derivatives of fields to be:

dφ

dr
∼ ∆φ

R
(5.4)

where R is the bubble size, which we assume comparable to the thickness. Calling the

difference in energy of the states ∆E, this gives

R ∼ ∆φ√
∆E

(5.5)

and

Sb ∼
(∆φ)4

∆E
. (5.6)

This is much larger than (M2
p /m3/2)

2 provided ∆φ ≪ Mp. Note that the Hubble constant

in the AdS state is of order m3/2, so as long as ∆φ ≪ Mp, gravitational corrections are

unimportant. For our model above, this gives

Sb ≈
(

M

µ

)4
[ µ

M

]
8

n+2
. (5.7)

We have written the amplitude in this form to indicate that even for M ∼ Mp, tunneling

is more rapid than in the deep AdS case we have discussed above.
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5.1 Models with stable and metastable dynamical supersymmetry breaking

We expect that the model of eq. (5.1) captures the principal features of most models of

metastable dynamical supersymmetry breaking: gravitational effects are unimportant, and

tunneling is parameterically faster than in the deep AdS case. It certainly fits in the class

of retrofitted models [3]. The ISS model has a similar structure [2]. In that case, the small

parameter is the quark mass, m, over the dynamical scale Λ, and the tunneling amplitude

behaves as a power of m/Λ.

What about models such as the “3-2” model, with what might be called “stable su-

persymmetry breaking”? Even in this model, including non-renormalizable interactions,

one expects that there will be supersymmetric vacua. The critical distinction lies in the

fact that in this case, the minima of the potential lie at fields of order M , where M is the

scale of the non-renormalizable operators; the depth of the corresponding AdS states then

does not tend to zero as m3/2 → 0. This behavior seems generic, but there are curious

exceptions. In particular, consider the model with gauge group SU(5) and a single 5̄ and

10. In this model, there is simply no invariant superpotential one can write down [20].

So there is no lower energy supersymmetric state. Of course, embedded in some larger

landscape, other behaviors are possible.

6 Implications

We have seen that, in the nearly supersymmetric limit, it is possible to make general

statements about vacuum tunneling. In the limit that field excursions are small compared

to the Planck scale, and the scales of the potential are small, we have seen that there is a

simple, universal form of the tunneling amplitude. More generally, we have understood the

parametric suppression of tunneling both in the case of what we have called “deep AdS”

vacua, and vacua with what we have defined to be metastable supersymmetry breaking.

We have also seen that in this limit (and also in global supersymmetry, in nearly su-

persymmetric systems), the problem of tunneling can be usefully phrased in the language

of three dimensional field theory. This provides a useful setup in which to consider the

calculation of the functional determinant, and to assess the validity of the thin wall approx-

imation. In the gravitational case, further study of the effective field theory is warranted

(e.g. not all of the low lying modes are actually localized on the bubble wall) and will be

reported elsewhere.

If a landscape picture of fundamental physics is valid, the observations here might be of

some importance. They reinforce the notion that supersymmetric states in a landscape are

special, in that they are automatically highly metastable. Few, if any, other generic features

of stationary points of known string theories lead to stability in such a simple way [15].

Our results might also be relevant for considerations of eternal inflation in a landscape.

It is natural to ask, for example, are lifetimes of typical states long or short compared to

recurrence times [21]. If the states with metastable supersymmetry breaking dominate the

landscape, than this is not an issue. If the deep AdS states are typical, then those for

which tunneling vanishes for vanishing c.c. will have lifetimes of order the recurrence time.
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